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A B S T R A C T

Molecular diagnostics is becoming one of the major drivers of personalized oncology. With hundreds of different
approved anticancer drugs and regimens of their administration, selecting the proper treatment for a patient is at
least nontrivial task. This is especially sound for the cases of recurrent and metastatic cancers where the standard
lines of therapy failed. Recent trials demonstrated that mutation assays have a strong limitation in personalized
selection of therapeutics, consequently, most of the drugs cannot be ranked and only a small percentage of
patients can benefit from the screening. Other approaches are, therefore, needed to address a problem of finding
proper targeted therapies. The analysis of RNA expression (transcriptomic) profiles presents a reasonable so-
lution because transcriptomics stands a few steps closer to tumor phenotype than the genome analysis. Several
recent studies pioneered using transcriptomics for practical oncology and showed truly encouraging clinical
results. The possibility of directly measuring of expression levels of molecular drugs’ targets and profiling ac-
tivation of the relevant molecular pathways enables personalized prioritizing for all types of molecular-targeted
therapies. RNA sequencing is the most robust tool for the high throughput quantitative transcriptomics. Its use,
potentials, and limitations for the clinical oncology will be reviewed here along with the technical aspects such
as optimal types of biosamples, RNA sequencing profile normalization, quality controls and several levels of data
analysis.

1. Introduction: a brief overview of the targeted therapy in cancer

The turn of Millennium was marked by the series of spectacular
breakthroughs in molecular medicine. The completion of Human
Genome Project coincided with the development of three game-chan-
ging therapies in oncology, namely, imatinib (inhibitor of fusion BCR-
ABL tyrosine kinase) in chronic myelogeneous leukemia (the same drug
was later found to be active as a KIT inhibitor in gastrointestinal
stromal tumors), rituximab (monoclonal antibodies against CD20) in B-
cell lymphoma, and trastuzumab (anti-HER2 antibodies) in breast

cancer [1–3]. A successful treatment of these cancers, refractory to
traditional cytostatic chemotherapy, accompanied by a moderate toxi-
city, was welcomed by the term “targeted therapy”, contrasting the new
drugs, aiming at molecules specific (exclusively or mainly) to the tumor
cells, with “old”, molecularly indiscriminative and, consequently, toxic
chemotherapy, inflicting severe damage to many healthy tissues. In-
deed, the prospects emerged to find corresponding targets in all or most
tumors and, eventually, to score a victory in the fight against cancer.

Medical and pharmaceutical community rushed into the proverbial
breach, and further molecularly targeted drugs were developed and
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entered clinical trials, among others including inhibitors of RAS and
RAF proteins, antiapoptotic BCL2, vascular endothelial growth factor
(VEGF), and its receptors, matrix metalloproteinases (MMPs), epi-
dermal growth factor receptor (EGFR) [4–6]. Several agents such as
sorafenib and sunitinib were designed to aim at multiple targets and
hence called “multitargeted drugs”. However, the success of these ap-
proaches was limited at best, and many target molecules deemed non-
druggable. Tumor responses were rare and mostly short-term, and
toxicity, while different from those of chemotherapy, became sig-
nificant. Thus, the distinction between targeted drugs and che-
motherapy became blurred, and the optimism toward curing cancer
waned.

One of the main targets for anticancer treatment became tumor
angiogenesis. Monoclonal antibodies to VEGF (bevacizumab), VEGF-
trap (aflibercept) and antibodies to VEGF receptor 2 (ramucirumab) as
well as numerous small-molecule inhibitors of VEGF receptors were
extensively studied in practically all tumor types. The results were
mixed; even in renal cancer, clearly dependent on angiogenesis, durable
responses were infrequent. The best strategy that unexpectedly (and
somehow counter intuitively) emerged from these trials was to combine
bevacizumab with cytotoxic chemotherapy, only to improve overall
survival by 10–15% (1.5–3 months in most cases) [7,8].

After several years of trial and error, it became clear that the target
must be defined more meticulously. For example, EGFR inhibitors ge-
fitinib and erlotinib failed to improve survival in non-selected lung
cancer populations, but were found to be active against rare tumors
(mainly adenocarcinomas) with activating mutations in EGFR gene,
namely L858R and exon 19 deletions [9–11]. Monoclonal antibodies to
EGFR (cetuximab and panitumumab) showed some activity in color-
ectal cancer, but only in tumors without KRAS, NRAS, and BRAF mu-
tations [12,13]. Many other tumors, like lung, esophageal, or head and
neck cancers, have very little sensitivity to these agents, despite strong
expression of EGFR. Different tumors with activated BRAF oncogene
bearing V600E mutation were resistant to sorafenib, but amenable to
the treatment with more selective drugs such as vemurafenib and
dabrafenib. In fact, their efficacy was very tumor-specific, with strong
and lasting responses in melanoma (particularly in combination with
MEK inhibitors like trametinib), a decent effect in some other BRAF-
mutated cancers (e.g., small fractions of glioblastomas, lung adeno-
carcinomas, and cholangiocarcinomas), but a complete lack of benefit
in colorectal and thyroid cancers, there BRAF mutations are abundant
[14–18].

Several relatively rare genetic abnormalities were described as tar-
gets for anticancer therapy, the most prominent examples in solid tu-
mors being ALK and ROS1 gene rearrangements in lung adenocarci-
noma, susceptible to inhibition with crizotinib and its analogues
[19,20], and sonic hedgehog pathway alterations in basal-cell carci-
noma and medulloblastoma, successfully targeted with vismodegib
[21–23]. Some important targets were detected at low frequencies in
many different tumors, such as NTRK genes fusions in a broad range of
cancers (including thyroid, colorectal, and lung adenocarcinomas, and
even rare sarcomas and glioblastomas), inhibited by entrectinib and
loratrectinib, as well as MET exon 14 skipping in several tumors,
making them vulnerable to MET inhibitors like crizotinib or cabo-
zantinib [24,25].

Further incremental advances in targeted therapy stemmed from the
study of hereditary breast and ovarian cancers. Germ-line and somatic
defects in BRCA1, BRCA2, CHEK2, ATM and other DNA damage repair
genes found in these tumors (and at smaller percentages in several
others, e.g. prostate and pancreatic cancers) make them amenable to
synthetic lethality by using poly(ADP-ribose) polymerase (PARP) in-
hibitors, e.g. olaparib or veliparib [26].

Unfortunately, as advances in DNA sequencing defined molecular
portraits of most cancer subtypes and comprehensive genomic profiles
of common tumors became available, the proportion of cancer patients
with actionable molecular targets, where currently available drugs can

achieve a durable remission, appeared to shrink to 10–15%.
A landmark achievement that practically doubled that dismal

numbers was the development of immune checkpoint inhibitors,
namely, antibodies cytotoxic T-lymphocyte–associated antigen 4
(CTL4), programmed cell death protein 1 (PD-1), and PD-L1. These
agents — antibodies to CTLA4 (ipilimumab), PD-1 (nivolumab and
pemprolizumab) and PD-L1 (atezolizumab, durvalumab and avelumab)
— may induce strong responses in many tumor types, but, in contrast to
several targeted drugs described above, robust predictors of their effi-
cacy are still elusive, with a single exception being microsatellite in-
stability in tiny fraction of different tumors, mainly colorectal cancer
[27–30].

Overall, despite spectacular successes in a significant, but still small
percentage of patients, targeted therapy in oncology faces several
challenges: a lack of genomic (mutation-based) predictors of efficacy
for many agents, development of resistance after the initial response in
sensitive tumors, as well as tumor heterogeneity with a limited ability
to predict the fate of metastases after single primary biopsy [29,31].

Personalized diagnostics is viewed as a future standard in oncology.
Currently, however, only a limited number of genetic platforms use
several types of high-throughput genetic profiling to consult physicians
and patients about targeted therapy. The examples of such platforms
are Caris Molecular Intelligence and Foundation One [32–34]. Their use
to obtain clinically actionable results is based on an analysis of a de-
fined spectrum of mutations with previously demonstrated significance,
as well as on immunohistochemical (IHC) profiling of several protein
markers. Resulting mutational profiles are limited by a panel of target
genes (overwhelming minority of the total number) and are used
mainly to calculate overall tumor mutational burden. By this approach,
most of obtained genetic information is of no use. Cited platforms do
not use high-throughput expression profiles, do not analyze upregula-
tion of signaling pathways and are not suited for integration of mul-
tiomics data. Consequently, their analytical power is considerably re-
stricted.

This article examines the approaches that apply transcriptomic
analysis to overcome these obstacles and improve targeted therapy
selection in solid tumors. We assume that significant progress in this
area may be attainable by exploring up- and downregulation of the
intracellular signaling pathways using integrative data from the deep
exomic and transcriptomic sequencing.

2. Profiling of gene expression in clinical oncology

Gene expression can be monitored on both mRNA and protein levels
[35] while both dimensions have their advantages and limitations. The
protein level is obviously closer to the cellular or tissue phenotype
because these are the proteins that execute major molecular functions
in a living cell (Fig. 1). There is a plethora of methods for measuring
expression levels for single proteins in fresh or fixed tumor cells and
tissues, including immunoassays such as immunohistochemistry, Wes-
tern blotting and other super hits in modern clinical lab diagnostics
[36]. For better performance of cancer diagnostic and predictive clas-
sifiers, immunoassays are multiplexed [37]. At the same time, the
number of techniques for high throughput and analytically robust
protein quantitation is quite limited. Primarily, this can be performed
by means of protein microarrays [38] and mass spectrometry-linked
proteomic assays [39]. In hunt for new diagnostic and theranostic
methods, hundreds and thousands of proteins are intended to be mea-
sured with microarrays or mass-spectrometry at the discovery phase.
Then, if the more limited diagnostic signature is selected, multiplex
immunoassays or targeted mass-spectrometric tests may be further used
in clinical trials [40].

3. Protein microarrays

Protein microarrays are based on the principle of specific
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recognition of proteins by the respective monoclonal antibodies or
other binders, such as oligonucleotide aptamers, where each sector on
an array is reserved to an individual protein. The principle of antibody
microarray fabrication is known from early 1980s [41], and since that
time, they were often used for cancer biomarker discovery [42,43].
Besides the arrays of antibodies linked to the solid phase, reverse phase
microarrays are widely used, where small tissue samples are attached to
the surface which is then probed by individual antibody in each spot
[44]. The antibody microarray approach has several technical diffi-
culties. First of all, there is a need in highly specific and sensitive panel
of monoclonal antibodies to interrogate complete human proteome or
its significant part. This is technically challenging, especially because
conformation/modification patterns of individual proteins from human
tissues may differ dramatically from those used in vitro to obtain the
analytic antibodies [38]. The challenge of antibody handling is partly
met by use of microarrays, where native or modified aptamers are used
as multiple protein binders [45]. For example, a technical platform
often used in cancer research is a proprietary Somascan™ modified
aptamer-based microarray [46]. Use of the latter started from blood
plasma applications [47] and now proceeds to cancer tissue assays [48].

Another major problem for any protein microarrays is different
physical and chemical properties like solubility and hydrophobicity of
different proteins extracted from the tissues to be analyzed [49]. Fi-
nally, different proteins are degraded with different rates, especially in
different tissues, and all the technical procedures like sample isolation,
protein extraction and processing must be strictly synchronized to at-
tempt obtaining meaningful data [49]. Taken together this creates
substantial obstacles to work with minute amounts of clinical bioma-
terials, to reproducibly measure and compare protein levels [50].

4. Mass-spectrometry – initial MALDI profiling

Besides protein microarray, the second major branch of methods for
multiple protein identification and quantitation of cancer-related sam-
ples is a mass-spectrometry-based proteomics [51]. In the very begin-
ning of proteomics itself, in early 2000s, a first approach to distinguish
cancerous specimens based on their protein composition was blood
plasma profiling using matrix-assisted laser desorption/ionisation time-
of-flight (MALDI-TOF) mass spectrometry [52]. In this approach, blood
plasma or other biosample is applied to the metal surface almost
without separation, and tens to hundreds of proteins are detected. The
resultant profiles may be compared between normal and cancer sam-
ples and were thought to serve as diagnostic assays for clinical appli-
cations [53]. It was shown soon after introduction of the approach that
these profiles lack analytical sensitivity and thus formed by highly
abundant peptides and proteins, mostly the acute phase reactants [54].
Thus, without enough diagnostic accuracy, MALDI-TOF proteomic

profiles were not further considered for primary cancer diagnostics or
screening. However, multiple efforts were made to translate the MALDI-
TOF based assays into clinical practice as prognostic and/or predictive
tests [55]. The most successful of them is a currently marketed Veristrat
test which is prognostic for outcome of non-small cell lung cancer
(NSCLC) with the erlotinib treatment and predictive of differential
treatment benefit between erlotinib and chemotherapy [56].

5. Shotgun proteomics

After development of MALDI-TOF-based assays, which met criticism
for their insufficient sensitivity, the shotgun proteomics was introduced
for analysis of cancer cells and tissues. In the shotgun approach, the
proteins extracted from a biosample are completely digested by pro-
teolytic enzyme(s) with known specificity(ies) thus generating a char-
acteristic repertoire of peptides that can be resolved as specific peaks
following high-resolution mass spectrometry [39]. These may serve to
characterize protein contents and abundances in biosamples. The state-
of-the-art shotgun proteomic workflow may identify and even quantify
up to ten thousand gene products from one sample [57]. Many ex-
amples can be mentioned of these techniques’ applicability to discovery
and tracing of cancer biomarkers [58–60], in characterizing functional
dynamics of cancer proteome, such as changes in protein phosphor-
ylation or other types of modifications [61,62].

6. FFPE versus frozen tissue

There is an attractive option to use formalin-fixed, paraffin em-
bedded (FFPE) tumor specimens instead of freshly frozen tissues in
biomarker discovery phase of mass-spectrometric assay. The proportion
of papers which describe such a use of FFPE tissue is growing [63]. In
the field, a discussion has been started if the analysis of archived tissues
may serve an appropriate alternative to frozen samples [64]. A decade
ago, a major study demonstrated that these two types of cancer samples
can be used for shotgun proteomic assays interchangeably [65]. How-
ever, it is known that the procedure of embedding and consequent re-
lease of proteins from the paraffin leads to irreversible covalent changes
of native protein sequences [64]. With a progress in sensitivity of
protein identification, these changes may influence to the retrieval of
low-abundant proteins which are of potential importance for cancer
[63]. Thus, the major CPTAC cancer proteomic consortium uses frozen
microdissected tissues for the proteogenomic projects which add pro-
teomic data to the cancer genomes and transcriptomes [66,67]. At the
same time, FFPE tumor samples are widely used in proteomic studies
with shotgun [68] and targeted [69] mass-spectrometric methods, as
well as for MALDI-based mass-spectrometric tissue imaging [70].

Fig. 1. Outline of major OMICS approaches in clinical oncology.
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7. Proteogenomic approach

In molecular cancer studies, it is attractive to combine results of two
or more omics techniques for exhaustive characterization of each tumor
sample. The approach of combining deep nucleic acid sequencing and
shotgun proteomics was generally called proteogenomics. The latter
made it possible to better classify cases of the same tumor type for
prognostic and predictive decisions [71] and also to identify mutant
proteins as biomarkers and neoantigens [72].

Major proteogenomic studies which included hundreds of individual
tumors were started by CPTAC consortium for the major cancer types,
such as colon, breast and ovarian cancer [66,73,74]. The data in-
tegration provided clinically relevant results. For example, the recent
proteogenomic study of colon cancer allowed identification of potential
protein signatures predictive for response to the immune checkpoint
inhibitor therapy [67]. Proteomics therefore is on its way to becoming a
method of choice for profiling gene expression in clinical applications,
although several issues like reproducibility, costs and (not) ease of use
are still to be solved.

8. Ribosomal profiling

On the interface between proteomics and transcriptomics, another
approach termed “translatomics” [75], or ribosomal profiling should be
mentioned based on isolation of mRNA molecules directly bound with
ribosome followed by their deep sequencing [76]. This makes it pos-
sible to quantitatively estimate translation of mRNAs by ribosomes in a
biosample [77]. This approach is one step closer to the cancer pheno-
type than transcriptomics itself, thus attracting growing attention in
biomedical research [78]. However, the procedure of ribosome pro-
filing is still laborious and experimentally challenging, thus limiting its
broad applicability [79]. It is also impossible for fixed clinical bioma-
terials, because it requires substantial amounts of fresh tissue which is
problematic for clinical diagnostics of most of solid cancers [80].

9. Transcriptomics

Transcriptomics deals with directly analyzing concentrations of
RNA molecules in biosamples, including mRNAs for protein coding
genes and microRNAs [81]. Standing at a longer distance from the
phenotype than translatomics, transcriptomics remains unparalleled
approach in terms of generating high throughput gene expression data
using robust and relatively chip experimental protocols suitable for the
analysis of fresh and fixed clinical biomaterials [82]. A growing tran-
scriptomic data is deposited in the special public repositories like Gene
Expression Omnibus, GEO [83] and Array-Express [84]. accumulating
more than two million of individual profiles obtained in more than
100,000 series of experiments [85].

Importantly, strong statistically significant correlations (r range
0.59-0.89) have been reported between ribosomal profiling and tran-
scriptomic data for mRNA molecules [86–88], thus justifying the use of
transcriptomics for functional interrogation of gene expression.

Three major directions in cancer transcriptomics can be mentioned
such as quantitative polymerase chain reaction (PCR) [89], microarray
hybridization [90] and RNA sequencing [91]. In quantitative PCR as-
says, simultaneous profiling of multiple gene expressions can be made
at a very high accuracy [92], but unfortunately this type of gene
screening cannot be done on a truly high-performance scale because of
technical limitations. PCR-on-chip systems are the most labor saving
among this group of methods, but they are limited by simultaneously
probing hundreds or up to one thousand of human genes, e.g. [93].

Microarray hybridization is based on complementary hybridization
of nucleic acids in solution, where the extent of gene product bound to a
surface-immobilized specific probe is proportionate to its concentration
in a biosample [94]. Multiple microarray platforms have been used for
analyzing gene expression in human cancers, including Affymetrix

[95], Illumina [96], Agilent [97] and CustomArray [98] systems. They
utilize different library preparation protocols, e.g. different enzymes
and numbers of PCR cycles, but also use different equipment and
physical principles for detecting hybridization signals [99]. The same is
true also for the different RNA sequencing platforms, such as Illumina
[100], Ion Torrent/Proton [100] and Oxford Nanopore [101] systems.

These differences in sample preparation and screening methods
result in a dramatic incompatibility of the results obtained using dif-
ferent platforms, reagents and kits, both for the microarray family and
RNA sequencing techniques [102,103]. This is the reason why experi-
mental results on gene expression are generally compared within the
same platform [103].

Performances of RNA sequencing and expression microarrays were
compared in many published investigations [104–106]. This is gen-
erally accepted now that RNA sequencing demonstrates superior pre-
cision in measuring gene expression than microarray hybridization, e.g.
lower false discovery rate for differentially expressed genes [93,107].
Historically, microarray technology was introduced to the field in mid-
nineties [108] and RNA sequencing – only about a dozen years later
[109]. This resulted in strong penetration of microarray analyzes in
various research protocols, so that major portion of currently publicly
available gene expression datasets were obtained using various micro-
array platforms [110]. However, nowadays RNA sequencing is con-
sidered a gold standard for high throughput screening of gene expres-
sion, for all types of clinical biomaterial [107].

10. Data normalization and incompatibility of RNA sequencing
information

As mentioned in the previous section, technical aspects like proto-
cols and sequencing platforms used result in a compromised compat-
ibility of RNA sequencing data. This has a functional consequence that
the data to be directly compared ideally must be obtained using the
same equipment, protocols and reagents. In many clinical oncology
applications, gene expression is compared in tumor samples with the
normal samples, e.g. [111–114]. Attention, therefore, should be paid to
investigate compatibility of the data under comparison. For example,
several collections (atlases) of RNA sequencing profiles for normal
human tissues have been published. Ideally, they must represent
normal tissues from healthy donors, profiled in a single series of ex-
periments using the same equipment and reagents. The largest pub-
lished dataset, GTEx [115] (11,688 samples), lacks publicly available
data on the donor’s age, which limits its use for many practical appli-
cations in cancer biology. Access to the primary GTEx data also requires
sophisticated registration steps that cannot be performed by every in-
vestigator. The other relevant databases of a significant size include the
information on the donor’s age: TCGA [116] (625 samples), ENCODE
[117] polyA RNA-seq (41 samples) and ENCODE total RNA-seq (92
samples). However, they lack one or several of the previously men-
tioned features. For example, in The Cancer Genome Atlas (TCGA)
project database, the norms are considered specimens of histologically
normal tissue adjacent to surgically removed tumors [118]. However,
these tissues may be considered not physiologically normal due to nu-
merous effects tumors may exert on the neighboring cells including
biased growth factors and cytokine balances [119], pathological in-
flammation [120] and altered vascularization [121]. The ENCODE
datasets were generated for the autopsy normal tissues by RNA se-
quencing using different library preparation methods. They have only
1–4 samples profiled per tissue type (both male and female donors in-
cluded) and in most of the tissue types they can’t form a statistically
significant reference group.

We recently constructed and deposited an alternative collection of
original normal human tissue expression profiles obtained using
Illumina HiSeq-3000 engine [122]. To this end, a total of 142 solid
tissue samples representing 20 organs were taken from human healthy
donors killed in road accidents. In addition, blood samples were
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obtained from 17 healthy volunteers. Gene expression was profiled in
one series of experiments using the same reagents and protocols (data
ID GSE120795). When compared for compatibility with the tran-
scriptomic data from the previous databases, we found that totally 399
profiles showed tissue-specific rather than platform- or database-spe-
cific clustering. All these data were collected in a database termed
Oncobox Atlas of Normal Tissue Expression (ANTE) [122] including 11
sex-matched statistically significant tissue groups. The databases re-
viewed here may be useful to form reference groups during gene ex-
pression analyses in clinical biosamples.

The problem of gene expression data incompatibility makes pro-
blematic or even impossible comparison of experimental clinical pro-
files obtained using different experimental platforms and reagent sets
[123–126]. For many published expression datasets there are available
associated clinical outcomes linked with the patient’s individual re-
sponses on cancer therapies [127]. Consequently, this non-compar-
ability hampers further levels of data analysis for the different datasets,
e.g. finding differentially expressed genes and assessing activation of
molecular pathways [99,128].

Solving this problem would create a rich spectrum of clinically
annotated molecular data, including profiles obtained for primary and
metastatic cancer biosamples [103]. Accumulating these data in a
comparable form would create an immense knowledge base that could
be used for a plethora of practical applications in oncology such as drug
discovery, biomarker development and formulation of combination
therapies.

Accomplishing this task would require either initial gene expression
data technical normalization (when datasets under comparison were
obtained using the same experimental platform) or harmonization
(when different platforms were used) [99,103]. The major normal-
ization methods include quantile normalization (QN) [129], frozen
robust multi-array analysis for microarray hybridization data (FRMA)
[130], or DESeq [131] /DESeq2 [132]. There is also many methods
reported suitable for harmonization including cross-platform normal-
ization (XPN) [133,134], distance-weighted discrimination (DWD)
[135,136], Empirical Bayes (EB) method also known as ComBat [137],
Quantile Discretization (QD) [138], Normalized Discretization (NorDi)
[138], DisTran (Distribution Transformation) [139], Gene Quantiles
(GQ) [140], and platform-independent latent Dirichlet allocation
(PLIDA) [141]. XPN method showed the best performance in a funda-
mental comparison of these harmonization techniques [133]. It acts by
deeply restructuring distributions of gene expression levels for the
samples under comparison. The algorithm uses data clustering to
identify similarities between the gene expression profiles obtained
using different platforms, and then expands these similarity regions by
reshaping of the expression profiles. However, all harmonization
methods mentioned above have a major limitation that they aren’t
capable of performing harmonization for more than two expression
datasets [133]. They also show acceptable performance only for the
datasets of a comparable sample size, therefore complicating harmo-
nization of the real-world data [103]. Moreover, the resulting hybrid
data are not further compatible with any of the existing formats for the
same experimental platforms. This is a fundamental problem that
doesn’t allow converting various expression datasets into a uniform
shape enabling multiple direct comparisons.

An attempt to solve this problem has been recently published [103].
A new cross-platform data harmonization technique termed Shambhala
has been reported that is independent on (i) number of harmonized
datasets and/or experimental platforms, and (ii) number of samples in
every dataset. Shambhala harmonization converts in a universal pre-
defined format the expression profiles taken one by one from the da-
tasets under investigation, thus making them appropriate for further
direct comparisons [103]. The initial version of this technique has been
optimized for comparison of human transcriptomes, but it could be
further developed to create a more universal tool useful for data ana-
lysis from many species. So far this approach has been successfully

tested only for several model datasets [107] representing major mi-
croarray and RNA sequencing platforms [103]. Nevertheless, its further
development may result in a transcriptomic analogue of BLAST search
tool [142] that would be capable of ranking different transcriptomes by
similarities using a plethora of available gene expression datasets. Such
tool would clearly have strong practical impact in oncology as it might
be used to identify “twin” transcriptomes, thus improving indications
for therapy prescription and criteria for patient inclusion in clinical
trials.

11. Multiple levels of RNA sequencing data analysis in oncology

Clinical RNA sequencing data can be analyzed in multiple ways,
thus generating different outputs. Depending on the source of bioma-
terials, very different RNA sequencing results can be obtained. For
appropriately stored fresh tissue specimens, high-integrity RNAs are
isolated, thus leading to longer sequencing reads. For FFPE samples,
significantly more degraded RNA preps can be obtained, typically re-
sulting in 25–50 bp single end reads [122]. RNA sequencing reads are
mapped on human genes and ambiguously mapping reads are removed
from further analysis. Relative expression characteristics are then cal-
culated for every gene. It should be noted that degraded RNAs can
produce good-quality expression profiles that can form common clus-
ters with the samples from high-integrity RNAs of the same biological
origin [122]. Taking clustering of biologically similar samples as a
measure of quality, a threshold of approx. 2.5 million RNA sequencing
reads mapped on human protein coding genes was empirically estab-
lished for the analysis of both fresh and FFPE human tissues [122].
Samples with lower number of reads didn’t cluster in a biologically
meaningful manner, and vice versa [122]. However, working with
highly degraded RNAs from FFPE samples has a drawback that no
analysis of fused oncogenes can be performed because of too short reads
and subsequent problems with confident mapping of fusion sites within
the transcripts [143]. The same is true also for the analysis of differ-
ential alternative splice sites [144].

At the next level, cancer RNA profiles can be compared with normal
tissues to identify differentially expressed genes and calculate for them
case-to-normal ratios [145,146]. The reference biomaterials can be
typically obtained from either post-mortal healthy individuals or from
surgically removed pathologically normal tissue adjacent to tumor
[122]. Alternatively, many other normalization scenarios are possible,
e.g. metastatic tissues vs corresponding primary tumors, tumors re-
sponding on treatment vs non-responder tumors, etc. [147,148]. The
differential gene sets then can be analyzed in several ways.

First, case-to-normal expression ratios for the genes of a special
attention can be interesting per se. Second, for the systemic analysis,
the pools of upregulated and downregulated genes can be analyzed
together of separately. This analysis may include interrogating enrich-
ment of any specific Gene Ontology (GO) terms and their analogues
[149,150] or can it deal with the quantitative analysis of functional
features such as the activation of molecular pathways [128,151,152].
Remarkably, the latter type of analysis can be done not only on mRNA,
but also on microRNA level [153].

All the metrics obtained from different levels of gene expression
screenings in clinical biosamples (rough gene expression values, case-
to-normal ratios, molecular pathway activation levels, etc) can be
subjects of further applying machine learning (ML) methods to identify
biomarkers or create robust classifiers. ML is defined as the study of
algorithmically-built mathematical models that have been fitted for the
portion of data called the training dataset, to make predictions for the
similarly-obtained and similarly structured data called the test or vali-
dation dataset [154]. Efficiencies of ML-based models are described by
specific quality metrics such as sensitivity (Sn), specificity (Sp), area
under ROC curve (AUC), accuracy rate (ACC), Matthews correlation
coefficient (MCC) or by p-values from statistical tests distinguishing one
class from another [154–157]. Considering classical ML approaches,

A. Buzdin, et al. Seminars in Cancer Biology xxx (xxxx) xxx–xxx

5



most if not all of the available clinical genetic datasets are insufficient
for solving the task of differentiating the classes [158–161] of features
measured after RNA sequencing (e.g. gene expression values, case-to-
normal ratios and even pathway activation levels) are far bigger than
numbers of the corresponding patient biosamples linked with the
clinical outcomes.

To generate statistically significant predictions, this requires ex-
tensive reduction of a pool of features to be considered, and ideally
making their number comparable with the number of individuals ana-
lyzed [162]. This is the major limitation that can be only slightly at-
tenuated by merging different clinical gene expression datasets. To
reduce the number of features, they can be filtered according to specific
functional of statistical traits (e.g. leaving only the genes coding for
drug target genes; or genes/pathways with the highest abilities to dis-
criminate treatment responders from non-responders in training data-
sets) [146]. The statistical methods for feature selection can be Pearson
chi-squared test [163], correlation test [163], genetic algorithms [164],
principal component analysis (PCA) [165], etc.

There is a selection of ML algorithms and their combinations to be
further applied to a simplified expression dataset, like support vector
machines (SVM) [166], k nearest neighbors [167], decision trees [163],
random forest [165] and other methods. The data are initially obtained
with the training dataset are then validated using independent valida-
tion dataset.

However, the demonstrated performance of standard ML classifiers
was not high for clinically relevant predictions like drug response in
cancer patients [166,168]. To address this challenge, a new paradigm
recently emerged of considering flexible rather than fixed sets of fea-
tures that are fitted individually for every particular comparison of a
biosample with the pool of controls/training datasets [146,169]. The
approach proposed utilized data trimming – sample-specific removal of
features that don’t have significant number of neighboring hits in the
training dataset. Flexible data trimming prevents ML classifier from
extrapolation by excluding too variable features. In a pilot application
for the SVM method of ML and transcriptomic data, this enabled to
dramatically increase number and quality of biomarkers predicting
responses to chemotherapy treatments for 10/10 cohorts of 46–235
cancer patients [146].

12. Applications to clinical oncology

In its clinical oncology applications, RNA sequencing can be used
alone or in combination with DNA mutation analysis. Using both types
of data for high throughput genetic tests may combine strengths of
mutation profiling and gene expression data. Mutations are powerful
predictive biomarkers of several cancer drugs and therapeutic regimens
[170,171]. So far, mutations are typically profiled using genomic DNA
isolated from tumors, but not with RNA sequencing reads [172,173].
This is most probably due to frequently degraded RNAs in clinical
samples, short sequencing reads and disproportionate coverage of dif-
ferent gene sequences because of drastically variable expression levels.
Tumor mutation burden per million base pairs, which is one of the
major genetic markers for selection of immunotherapy treatments, is
also standardly measured using genetic (complete exome or clinical
exome panel) data [174,175]. However, theoretically this type of
analysis could be performed using RNA sequencing data as well, the
major requirement here is having sufficiently covered several million
base pairs of gene exon sequence.

In turn, RNA sequencing data make it possible to identify differen-
tially expressed drug target genes [176] and measure activation of
molecular pathways [151]. This allows patient-oriented personalized
ranking of all potentially beneficial cancer drugs with known molecular
specificities [151,152,177].

Immunohistochemistry remains a method of choice for inter-
rogating expression of cancer markers in most of clinical laboratories
[178–180]. However, RNA sequencing may provide even more accurate

way of measuring expression of marker genes, as this is the case for
PDL1 gene which expression positively correlates with patient’s re-
sponse on anti-PD-1/PD-L1 immunotherapy [181].

In recent works it was found experimentally [102,182] and theo-
retically formulated [99,128] that RNA data-based molecular pathway
activation levels outperform single gene expression levels as high-
quality cancer biomarkers. Alternatively, single gene expression pro-
files can be aggregated in specific gene signature with specific overall
score calculated on the basis of expression of relevant genes (see below)
[183,184].

13. Gene expression signatures as classification and prognostic
tools

Application of transcriptomic profiling to tumor classifications
yielded clinically important results in breast cancer, where four distinct
subtypes were defined in close concordance with major IHC markers
(estrogen receptors, HER2 and Ki-67) [185]. Similar efforts in other
cancers were less straightforward: e.g., for colorectal cancer, consensus
molecular subtypes were defined only recently, and their clinical re-
levance, as well as reproducibility, remains to be elusive [186,187].

In addition, several gene expression signatures were developed to
guide treatment (foremost, adjuvant chemotherapy) in breast cancer.
MammaPrint, the 70-gene panel, was developed in 2002 and was tested
in a large randomized controlled trial (MINDACT), confirming its
prognostic power to differentiate low- and high-risk patients [188,189].
Along with MammaPrint, other transcriptomic signatures, namely,
Oncotype Dx (21-gene signature recently tested in TAILORx trial),
Prosigna (PAM 50, a 50-gene panel), and Endopredict (a 12-gene panel)
received a regulatory approval [190–192]. While prognostic value of
these signatures is well documented, predictive value in less certain
(i.e., they can predict tumor relapse, but not whether chemotherapy can
indeed prevent the dire outcome).

In turn, in thyroid cancer diagnostics currently microRNA molecule
expression signatures are used. The major clinical problem here is the
proper early diagnostics of thyroid cancer in thin needle biopsy sam-
ples. The cytological tests routinely in use for that often fail in dis-
criminating follicular adenoma (benign neoplasm) and malignant fol-
licular subtype of thyroid cancer. This frequently results in incorrect
diagnostics, thus leading to either unnecessary highly invasive surgery
or overlooked tumor progression [193]. Several diagnostic panels have
been published to discriminate between benign and malignant thyroid
neoplasms, all of them with the major impact of microRNA expression
component [194–196]. For example, the marketed diagnostic panels
RosettaGXreveal (Rosetta Genomics) and ThyraMIR (Interpace Diag-
nostic) are based on 24-microRNA and 10-microRNA (plus eight DNA
mutations) expression signatures, respectively (reviewed in [194]).

Finally, there are several studies where transcriptomic data were
used to adjust tumor therapies, all of them published very recently. In a
multicenter trial termed WINTHER (NCT01856296) that started in
2013 and was published in 2019 [197], advanced cancer patients (the
median number of previous therapies was three) underwent molecular
diagnostics procedure. The patients were first investigated by DNA se-
quencing of their fresh biopsies using Foundation One clinical panel
involving 236 genes exons. In part because of a small panel size, many
tumors had no tractable genomic alterations. These who could not
obtain meaningful results from DNA assay were subjected to tran-
scriptome profiling using Agilent microarrays to establish expression
levels of drug target genes.

The patients were then treated in accordance to DNA profiling (arm
A) or RNA expression (arm B). In arm B, gene expression in tumor or
metastases was compared with adjacent normal tissues. The clinical
management committee (investigators from five countries) re-
commended therapies, prioritizing genomic matches; physicians de-
termined the therapy given. Matching scores were calculated post-hoc
for each patient, according to drugs received: for DNA, the number of

A. Buzdin, et al. Seminars in Cancer Biology xxx (xxxx) xxx–xxx

6



alterations matched divided by the total alteration number; for RNA,
expression-matched drug ranks. More specifically, the method used for
RNA data was based on a specific knowledge database comprising the
target genes for each drug under consideration. Determining a score for
each drug relied on the percentage of deregulated genes among the
target genes implicated in the efficacy of each drug in the tumor sample
from the patient.

Overall, 303 patients were included in this study; only 107 of them
(35%; 69 in arm A and 38 in arm B) were evaluable for therapy. The
most common diagnoses were colon, head and neck, and lung cancers.
Among the 107 patients, the rate of stable disease exceeding 6 months
and partial or complete response was 23.2% for arm A and 31.6% for
arm B, thus showing somewhat better results for the RNA-based diag-
nostic cohort [197].

Alternative and more sophisticated transcriptome drug scoring ap-
proach termed Oncobox [198] is based on the analysis of intracellular
molecular pathways activation and measuring expressions of molecular
target genes for every anticancer target drug under consideration. Using
Oncobox method requires collection of normal (control) expression
profiles and annotated databases of molecular pathways and drug
target genes. Both microarray and RNA sequencing data are acceptable
for this type of analysis, although the latter type of data prevails in the
most recent applications of this technique [198]. The method output is
the personalized rating of target anticancer drugs prioritized according
to balanced efficiency score (BES) that is calculated for every drug con-
sidering up/downregulation of its molecular targets and over/under-
activation of relevant molecular pathways.

Previously, a pilot prospective clinical investigation was performed
for a cohort of 23 recurrent/metastatic solid tumor patients using mi-
croarray gene expression data [145,199]. The objective response rate
for the Oncobox-guided drug prescriptions was ˜ 61% (complete+
partial response, RECIST). Since April 2018, a new trial started using
RNA sequencing data for recurrent/metastatic solid tumors that in-
cludes 239 patients (trial ID NCT03724097). RNAs were extracted from
the FFPE tissue blocks of surgically removed tumors or tumor biopsies.
Preference was given to the most recently obtained tissue specimens.
Following the test, 130 anticancer target drugs were rated according to
their predicted effectiveness. After the appointment of therapy, the
patients were naturally divided into the three observation groups. The
first group was formed by patients receiving drugs in agreement with
the Oncobox drug efficiency prediction as monotherapy or in combi-
nations. In the second group, patients received drugs not recommended
according to the Oncobox tests; in the third group patients received
palliative care. This trial is ongoing, but several preliminary results
have been recently published [200]. The primary feedback information
was received for 144 patients. 25 patients (17%) died before prescrip-
tion of the therapy, 19% received palliative care treatment, 39% re-
ceived Oncobox-recommended therapies and 25% received other
therapies. Tumor responses were estimated for 30 patients receiving
therapies, with the control-over-disease rates of 71% for Oncobox-re-
commended and 44% for other therapies. The results obtained also
suggested that cancer metastases and primary tumors frequently have
different gene expression, intracellular molecular pathway activation
and drug scoring patterns, thus pointing on the importance of testing
multiple tumor sites.

The latter finding was in line with another published study using the
same platform [201] where multisampling was used to develop a mo-
lecular guided tool for individualized selection of chemotherapeutics in
recurrent glioblastoma (GBM). From 2016 to 2018, biopsies from pri-
mary and recurrent GBM were collected from 44 GBMs including 23
primary, 19 recurrent and 2 secondary recurrent cases. In parallel,
biopsy materials were used to establish GBM stem cell lines. Both
biopsy materials and cell cultures were examined by RNA sequencing
and Oncobox analysis. Totally, 128 tissue samples and 42 cell cultures
were investigated, for fourteen patients matching pairs of primary and
recurrent GBM could be obtained. The results were compared for

primary and recurrent GBM. Oncobox analysis showed downregulation
of several pathways related to cell cycle and DNA repair and upregu-
lation of pathways involved in immune response in recurrent GBM
compared with the corresponding primary tumors. Specifically, in re-
current GBM there was a clear-cut down regulation of pathways tar-
geted by previously administered chemotherapeutic Temozolomide.
However, several other pathways were upregulated, including those
targeted by drugs Durvalumab and Pomalidomide currently in-
vestigated in phase II or III trials for GBM. These results were similar for
both tissue and cell culture specimens. Conclusion was drawn that the
RNA sequencing information linked with the bioinformatic analysis
using Oncobox platform has the potential of predicting sensitivity to
chemotherapeutics in GBM on an individual basis. In addition, a sig-
nificant degree of intratumoral heterogeneity (comparable to inter-
tumoral heterogeneity) was detected in most of the GBM samples [201].

Finally, there are two recently published case report studies where
Oncobox system was used to predict efficiencies of tyrosine kinase in-
hibitor (TKI) drugs in advanced metastatic cancers.

A 26-year-old woman with progressive granulosa cell ovarian tumor
underwent salvage therapy selection despite multiple previous lines of
therapy. The following target drugs were on the top of the rating ac-
cording the Oncobox test: Regorafenib, Sorafenib, Sunitinib, Pazopanib,
Axitinib, Imatinib. In October 2015, patient received treatment with
Sorafenib, but it was not well tolerated and this therapy was terminated
after 2 months. However, ultrasound examination indicated an asso-
ciated decrease in the size for 3 out of 4 neoplasms. The therapy re-
gimen was then switched to Imatinib, which was well tolerated and
resulted in a disease stabilization (RECIST). As for February 2019,
Imatinib administration was continued and patient is physically active
with Karnofsky scale index 90% [202]. Another patient with pro-
gressive metastatic cholangiocarcinoma was prescribed with sub-
sequent TKI monotherapies for Sorafenib and Pazopanib that occupied,
respectively, 2nd and 4th positions of the Oncobox personalized drug
ratings. It resulted in a two-years stabilization (RECIST) [203].

In principle, similar pathway approaches that were effective for
single drugs may also work for their combinations. However, these
studies are now at an early stage with only few recent reports pub-
lishing finding effective ATD combinations for cancer cell line or animal
models [204–207].

14. Concluding remarks

In the previous sections of this review, we tried to address the
current progress in technology, concepts and clinical applications of
RNA sequencing in oncology. Several lines of evidence suggest that
molecular tests based on transcriptomics are more efficient when
combined with DNA mutation analysis (see above). In a recent pub-
lication by Zolotovskaya et al., a method was published pioneering
quantitative molecular pathway analysis based on complete cancer
exome sequencing profiles [145,208,209]. A metric termed “pathway
instability” (PI) was introduced that reflects overall mutation burden of
a pathway. It can be calculated for either total mutations or any specific
group of them such as truncating mutations that abrogate protein
functions [209]. Like in transcriptomic data metrics, PI serves as a
significantly better type of biomarkers compared to mutations in in-
dividual genes [209]. Furthermore, a pathway-based algorithm was
developed using PI values to predict clinical efficacies of drugs. The
output value termed Mutation Drug Scoring (MDS) positively correlated
with the expected efficacies of drugs for specific tumors, as investigated
using 3.800 exome mutation profiles for 128 drugs by finding correla-
tions of MDS values with the known drug efficiencies from clinical trials
[208]. We may expect further intensive development of this field, most
probably resulting in an effective symbiosis of RNA- and DNA screening
methods within next generation cancer diagnostic platforms (Fig.2).
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